Roll No	Total Pages: 3
CMCA/M-20	10527
DATA STRUCTURES	
Paper-MCA-16-24	
Time Allowed: 3 Hours] [Max	ximum Marks : 75
Note: Attempt five questions in all, selection one question from each Unit. Question compulsory. All questions carry of Compulsory Question	ion No. 1 is
• • •	
1. Write short notes on the following:	5×3=15
(a) Asymptotic notations.	
(b) Priority queues.	
(c) Threaded binary trees.	
(d) Types of Sorting.	
(e) Dynamic memory management. UNIT-I	
2. (a) Explain how one-dimension	al and two-
dimensional arrays are stored in	computer
memory ? Write an algorith	hm to find the
transpose of the input matrix.	$7\frac{1}{2}$
(b) Write and explain the algorithms delete a string from a given text.	
10527/K/355	P. T. O.

3.	(a)	classifications of Data structure in detail.	10
	(b)	What is meant by complexity of algorithms? Explain using suitable example.	5
		UNIT–II	
4.	(a)	Write and explain an algorithm to convert an infix expression to postfix expression using stack.	7½
	(b)	element in a queue using arrays and linked	71/
		list.	7½
5.	(a)	Write and explain an algorithm to search an element in a linked list.	7½
	(b)	Write a program in C/C++ to create and display a linked list.	7½
6.	(a)	What is a Binary tree ? How can you store binary tree in computer memory ? Explain various traversal techniques using suitable	
		examples.	$7\frac{1}{2}$
	(b)	What is a B+ tree? How can you insert and delete an element in a B+ tree? Explain using suitable examples.	7½

7.	What is Binary Search tree? Write and explain
	algorithms for inserting and deleting an element
	in a BST using suitable examples.

15

UNIT-IV

8. (a) Write and explain the Dijkstra's algorithm for finding the shortest path in a graph.

 $7\frac{1}{2}$

(b) Write a program in C/C++ to search an element in an array using recursive binary search.

 $7\frac{1}{2}$

9. What is Hashing? Explain any three hash functions in detail. Also explain any three collision handling mechanisms in hashing.

15